
IOActive, Inc. Copyright ©2017. All Rights Reserved.

Embedding Defense in
Server-Side Applications

Fernando Arnaboldi
Senior Security Consultant

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Why Am I talking About This?

•  I write code

•  I audit code

•  I embedded defense in code

IOActive, Inc. Copyright ©2017. All Rights Reserved.

What is This Talk About

•  Embedded defense specification for server-side applications
•  Sample implementations in Java, .NET, PHP and Python
•  Talk about how attackers reveal themselves
•  How applications can recognize the attacks
•  Show how applications can react

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Intro

•  There are two problems associated to application’s security:
–  Developing secure code
–  Implementing a defense layer

•  The proposed solution:
–  Embed the defense with the code

IOActive, Inc. Copyright ©2017. All Rights Reserved.

The First Problem:

Developing Secure Code

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Developing Secure Code

•  Applications try to rely in secure coding guidelines to create secure
applications.

•  That is not enough, there are always hidden bugs in the code.

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Developing Secure Code (cont.)

•  The default behavior of applications that deal with insecure requests
is to just drop them.

•  When the applications do not detect the attacks, they start leaking
information.

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Developing Secure Code (cont.)

•  Let’s take for example one of the most secure codes. CERT is an
authoritative organization formed by DARPA dedicated to improving
the security and resilience of computer systems, which also define
secure coding guidelines.

•  What if CERT secure coding guidelines contain vulnerabilities?

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Secure Compliant Example #1
from CERT
•  “This compliant solution

implements the policy
that only files that live in
c:\homepath may be
opened by the user and
that the user is not
allowed to discover
anything about files
outside this directory”

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Secure Compliant Example #1 (cont.)

Demo CERT #1

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Secure Compliant Example #1 (cont.)

•  “only files that live in c:\homepath may be opened by the user”

•  Fail #1: What about C:\\homepathfail?

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Secure Compliant Example #1 (cont.)

•  Fail #2: Did not handle all exceptions
•  Fail #3: Did not validate method arguments

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Secure Compliant Example #1 (cont.)

•  Fail #4: They may not log the error

•  Fail #5: They know that someone is attacking the
filesystem and no real actions are being taken

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Define the application minimum
security level

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Define the application minimum
security level

•  Fail 1 shows that an attacker may be able to access
information from other directories.

•  Do you want to know when attackers exfiltrate information?

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Define the application minimum
security level (cont.)

•  Fail 2, 3 and 4 provide different forms of unhandled exceptions.

•  Do you want to know if someone is triggering expected or
unexpected exceptions?

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Define the application minimum
security level (cont.)

•  Fail 5 shows that the developer was aware that someone may try
to attack the application.

•  Do you want to do something when you’re aware of an attack?

IOActive, Inc. Copyright ©2017. All Rights Reserved.

The Second Problem:

Implementing a Defense Layer

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Previous Work on Embedded Defense

•  OWASP Java AppSensor is the most mature embedded defense

•  One programming language

•  It doesn’t consider all the attack vectors

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Problems of Using a Detached Defense

•  They may introduce new vulnerabilities.

•  Application’s source code always contains the different places to

embed the defense.

•  Certain defense solutions work by analyzing the logs after the

incident happened, with no real time protection.

•  Detached defenses require additional permissions to be installed

and can be unique to certain environments.

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Vulnerabilities are Valuable

IOActive, Inc. Copyright ©2017. All Rights Reserved.

The Proposed Solution:

Integrate the Defense within the Code

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Proposed Solution

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Proposed Solution

•  A comprehensive open source specification of defensive measures

•  Integrate the defense in three places of your code:

1.  Pre-execution: before the functionality is executed

2.  Execution: while the functionality is executed

3.  Post-execution: after the functionality was executed

IOActive, Inc. Copyright ©2017. All Rights Reserved.

1. Pre-execution Controls

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Pre-execution Controls: Tools Disclosure

•  Tools can be identified by multiple factors. Consider an HTTP request:

GET /index.bak?id=1 HTTP/1.1
Host: 1.2.3.4
User-Agent: Something
Cookie: something=1; Host

•  Nessus
•  Nikto
•  Qualys
•  W3af
•  WebScarab
•  Zed Attack Proxy

HTTP Method
•  Acunetix
•  Burp
•  Metasploit
•  Nessus
•  Nikto
•  Nmap
•  Qualys
•  Skipfish
•  w3af

Forced browsing
•  Acunetix
•  Burp
•  dirb
•  Dirbuster
•  dotdotpwn
•  Metasploit
•  Nessus
•  Nikto
•  Paros
•  Qualys
•  skipfish
•  w3af

Backup files •  Acunetix
•  Burp
•  Core Impact
•  Metasploit
•  Nessus
•  Paros
•  w3af

URL •  Acunetix
•  Burp
•  Nessus
•  Nikto
•  Paros
•  Qualys
•  skipfish
•  Vega
•  Xenotix
•  Zed Attack Proxy

HTTP Protocol •  Acunetix
•  Burp
•  Metasploit
•  Nessus
•  Nikto
•  Nmap
•  Qualys
•  skipfish
•  w3af

User-agent

•  Burp
•  Dirbuster
•  Nessus
•  Nikto
•  Nmap
•  Paros
•  Parsero
•  Qualys
•  skipfish
•  sqlmap
•  Vega
•  w3af

Cookie
•  Burp

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Pre-execution Controls: Tools Disclosure (cont.)

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Pre-execution Control: Diversion/Trap Example

•  Developers can set up diversions for attackers:

•  Or transform diversions into traps:

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Pre-execution Control: Trap Example (cont.)
Checking passkey with the value fuzzing1’

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Pre-execution Control: Trap Example (cont.)
Checking passkey with the value fuzzing2’

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Why Use Pre-Execution Controls?

•  Attacker tools and techniques can be identified before reaching the
main code

•  Diversions may entice attackers to focus on incorrect areas

•  Traps can expose attackers

IOActive, Inc. Copyright ©2017. All Rights Reserved.

2. Execution Controls

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Execution Controls

•  Different protections throughout the code can be embedded:
–  Check if they are trying to perform a man-in-the-middle (MiTM) attack
–  Check if they are trying to exploit a path traversal
–  Check if they are trying to bypass an anti cross-site request forgery (CSRF)
–  Check if they are triggering expected exceptions
–  Check if they are triggering uncaught exceptions
–  Check if they are trying passwords in a loop
–  And so on…

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Execution Controls

•  Remember the CERT example for “homepath”?

•  The most serious vuln was related to an unlikely path traversal.

•  We will see later how a post-execution control may stop that attack after
the execution.

•  But right now we know there is an attack going in place. What can we do?

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Execution Control: Path Traversal Example
Checking a malicious string “C:\\homepath\\..\\attacker_Controlled”

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Execution Control: Path Traversal Example (cont.)
Checking a malicious string “C:\\homepath\\..\\attacker_Controlled”

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Why Use Execution Controls?

•  Certain controls can only be applied when being executed

•  For example, the expected exception of the C:\homepath

•  Or the unexpected exception of that program when executed without
parameters

IOActive, Inc. Copyright ©2017. All Rights Reserved.

3. Post-execution Controls

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Post-execution Controls

•  Sensitive information: what information attackers may want to exfiltrate?
(i.e. passwords, filenames)

•  Time information: gain knowledge by timing (i.e. authentication, big
requests)

•  Size information: tools analyze the behavior based on contents and size

•  Environment information: web servers may try to provide information
(time)

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Secure Compliant Example #2
from CERT
•  “To prevent vulnerabilities, a program must operate only on files in

secure directories. […] file links can be swapped out and may not
always point to the intended location. As a result, file links in shared
directories are untrusted and should not be operated on”

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Secure Compliant Example #2 (cont.)

Demo CERT #2

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Secure Compliant Example #2 (cont.)
•  1) Create a symlink and a hard link:

•  2) Check the symlink

•  3) Check the hard link:

$ java isInSecureDir /Users/test/hardlink
Accessing: /Users/test/hardlink
$

$ ln -s /tmp/extract_data /Users/test/symlink
$ ln /tmp/extract_data /Users/test/hardlink
$ ls -l /Users/test/symlink /Users/test/hardlink
lrwxr-xr-x 1 test staff 17 Mar 8 16:33 /Users/test/symlink -> /tmp/extract_data
-rw-r--r-- 2 test wheel 0 Mar 8 16:32 /Users/test/hardlink

$ java isInSecureDir /Users/test/symlink
Accessing: /tmp/extract_data
File not in secure directory ✓

✗

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Post-Execution Control: What Now?

•  Assuming the previous control was in place, the
attacker may be ready to exfiltrate information.

•  There are certain pieces of information that are
valuable for the application or attackers

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Post-execution Control: Exfiltration (cont.)
Checking if a special username is being exfiltrated

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Why Use Post-Execution Controls?

•  Avoid sharing sensitive information

•  Avoid attackers abusing timing or size related attacks

•  Avoid the environment from providing extra pieces of data

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Take Actions

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Take Actions

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Take Actions (cont’d)

•  Log and share your knowledge

•  Alert the administrator or security personnel

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Take Actions (cont.)

•  React to the attacker, do not ignore it:
–  Distract: introduce fake functionalities or potential vulnerabilities

–  Slow down: make the process slower

–  Stop: avoid dealing with them and eventually disconnect the application

–  Bait: give something to the attacker that may help to prosecute them (i.e. a bank
account or a credit card information)

•  Legal actions

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Take Actions (cont.)

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Take Actions (cont.)

•  Implement it in your language of choice:

Java for Jetty

PHP for Apache

C# for IIS

Python for Django

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Take Actions (cont.)

Testing Self Defense

IOActive, Inc. Copyright ©2017. All Rights Reserved.

Conclusions

•  Do not ignore attacks: do something.

•  Suggest defense mechanisms when doing source
code analysis.

•  Be dynamic and share your attack knowledge.

IOActive, Inc. Copyright ©2017 All Rights Reserved.

Questions?

IOActive, Inc. Copyright ©2017 All Rights Reserved.

Thank You
69

