
WHITE PAPER

© IOActive, Inc. All Rights Reserved

Embedding Defense in Server-Side
Applications

First Release

Fernando Arnaboldi
IOActive Senior Security Consultant

Abstract
Applications often rely on secure development practices and third-party defense
mechanisms for protection. Whenever an application receives malicious payloads they are
either dropped or executed by the affected application. Ignoring these situations aid
attackers in performing deep analysis of applications until they are able to exploit existing
flaws.

Standards, libraries and third-party defense systems developed to secure applications
introduce opportunities for attackers. While some protections have already been
implemented in applications and web firewalls, there is a whole spectrum of techniques not
being analyzed. This research details how server-side applications can incorporate an
extensive layer of defense to detect and protect against attackers.

Defense mechanisms will be released in four different languages: .NET, Java, PHP and
Python. Throughout the presentation, undisclosed vulnerabilities from secure coding
guidelines will be used to exemplify. By implementing the defenses laid out in this paper,
attackers may unwittingly become the victims.

© IOActive, Inc. All Rights Reserved. [2]

Contents
Introduction ... 3	
Setting Up a Strong Defense .. 4	

Pre-execution Controls ... 5	
Characteristics .. 5	
Traps (and Diversions) .. 9	

Execution Controls ... 11	
Checks .. 11	
Client Properties .. 14	
Exceptions ... 14	
Patterns ... 17	

Post-execution Controls ... 18	
Sensitive Information ... 18	
Timing Information .. 19	
Size Information .. 20	
Environment Information ... 21	

Attack Yourself ... 21	
During an Attack .. 22	

Log the Attack .. 22	
Inform about the Attack .. 23	
Take Action .. 24	

Distract .. 24	
Slow Down .. 24	
Stop ... 25	
Bait .. 25	

Conclusions ... 26	
Appendix A: Score Table .. 27	
Appendix B: Tool Identification .. 29	

© IOActive, Inc. All Rights Reserved. [3]

Introduction
Applications will always have security flaws, which is why we rely on multiple layers of
defense. This specification is intended to serve as a guide to rethink how applications
defense should be approached. The goal is to introduce defensive methods that cause
attackers to cease or take incorrect actions based on false premises.

Certain defense techniques presented in here are already present in solutions like
intrusion protection systems (IPS) and web application firewalls (WAF). These products
are a valuable resource when basic, off-the-shelf protection is required or the application
source code is not available. However, implementations in native code provide a greater
degree of defense that cannot be achieved using third-party solutions. It is worth noting
the OWASP project to self-defend Java web applications1 that analyzes several of the
techniques here described. Nevertheless, this document aims to:

• Disclose a comprehensive list of current and new defensive techniques:
Different defensive techniques have been disclosed in books, papers and tools.
This document collects those techniques and presents new defensive opportunities
to fill the gap of opportunities present for attackers.

• Disclose how to identify attack tools before they access the functionalities.
The tools used by attackers disclose themselves in several ways. There are
multiple features of a request that can disclose it is not from a normal user; they
abuse security flaws in ways that serve to detect which type of tool the attacker is
using and developers can prepare diversions and traps in advance to be triggered
automatically.

• Disclose how to detect attacker techniques within code.
Certain techniques can be spotted throughout the code. Developers may know in
advance that certain conditions will only be triggered by attackers, and they can
also be prepared for certain unexpected scenarios.

• Provide a new defensive approach.
Defense is normally about blocking malicious IP addresses associated to
attackers; however, an attacker's focus can be diverted or modified. Sometimes
certain functionalities may be presented to attackers only to better prosecute them
if they are triggered.

• Provide these protections for multiple programming languages.
Functionalities to reduce the effectiveness of attackers and expose their actions
will be explained throughout this document using pseudo code, and working proof
of concept pieces of code will be released for four programming languages: Java,
Python, .NET and PHP.

1 OWASP AppSensor Project (https://www.owasp.org/index.php/OWASP_AppSensor_Project)

© IOActive, Inc. All Rights Reserved. [4]

Setting Up a Strong Defense
Application defense applies to any type of software; however, server-side applications are
more attractive for a couple of reasons. First, the code is normally never exposed to the
attackers, so they are forced to interact from a black box perspective without knowledge
on how the defenses were deployed. Secondly, server-side applications control what will
happen until they decide to interact or respond to the user.

The application must implement a minimum set of functionalities before an attack in order
to treat real users and attackers differently. Sometimes, one request will be enough to
target the actor as an attacker; other times, an accumulation of malicious actions will be
required based on a scoring system.

Figure 1: Defense flow chart

As illustrated in Figure 1, defensive controls should exist throughout the application:

• When a request is received, the first control is to check if the session (whether the
IP address, the user, or the cookie) appears to be from an attacker.

• Prior to accessing the application’s functionality, requests should be analyzed in
the "Pre-execution Controls" to detect attack tools and malicious actions.

• Once the session and the request are authorized, the application’s functionality
should include “Execution Controls” to detect specific attacks affecting the code.

• Finally, before sending a response to the user, the contents should be analyzed in
the “Post-execution Controls” to detect and prevent malicious scenarios.

© IOActive, Inc. All Rights Reserved. [5]

Whenever a malicious action is detected, the type of attack, the associated score of the
attack, and the session information should be logged. If the attacker's actions rise above
a certain level, the IT security team should be alerted and specific actions should be
taken.

Following different forms of controls for web applications will be explored.

Pre-execution Controls
Certain requests provide information that an attacker is trying to abuse a resource. This
will either happen because of the characteristics of the request, or because they were
caught in a trap.

Characteristics
Certain characteristics reveal if a request is from a legitimate user or part of an attack.
The information contained in the HTTP protocol, URL, User-Agent, and Host can
provide information about the type of tactics being used.

Malicious HTTP Method
Web applications commonly rely in a set of HTTP methods: GET, POST, etc. Some tools
will try to abuse non-existent HTTP methods (Acunetix uses the HTTP method
"ACUNETIX", w3af uses "ARGENTINA", Qualys uses "ABCD", etc.), while others try
potentially vulnerable methods (the TRACE or TRACK methods are a classic tested by
Burp, Nessus, Nikto, and others). Certain methods may be tested even when they are not
being used by your application (like PROPFIND, DEBUG, etc.).

Constructing a whitelist of valid and accepted methods allows the application to
distinguish between valid users and attackers:
1: $foundValidHttpMethod = false;
2: $results = $db->query("SELECT method FROM validHttpMethods");
3: while ($row = $results->fetchArray())
4: if($REQUEST_METHOD == $row["validMethod"])
5: $foundValidHttpMethod = true;
6: break;
7: if(!$foundValidHttpMethod)
8: attackDetected("Blacklisted HTTP method", 25);

Code 1: Pseudocode from the defense class to detect incorrect HTTP methods

A precise check of the HTTP method should be made for each function. This is discussed
in greater detail in "Incorrect HTTP Method".

Malicious URL and/or Value
The name of the tool sometimes appears as part of the URL, either as the filename or the
value for some of the parameters (like Acunetix, Burp, Nessus, Nikto, Nmap, Paros,
Qualys, Vega, and Zed attack proxy):

© IOActive, Inc. All Rights Reserved. [6]

1: $results = $db->query("SELECT denyString FROM denyUrlString");
2: while ($row = $results->fetchArray())
3: if(strstr($REQUEST_URI, $row["denyString"]))
4: attackDetected("Vulnerability scanner in URL", 10);

Code 2: Pseudocode from the defense class to detect vulnerability scanners in the URL

If the application does not properly perform input sanitization, then malicious payloads
can be included in this check from a blacklist perspective (like IPS or WAF do).

Invalid HTTP Protocol Version
Certain tools like Nessus, Qualys, and w3af try to use HTTP protocols that are
intentionally not supported or even malformed (like "HTTP/rndmmtd"). Since this value is
fuzzed to look for errors, it is better to whitelist accepted values:
1: if($SERVER_PROTOCOL != "HTTP/1.1") {
2: attackDetected("Incorrect HTTP Version", 100);

Code 3: Pseudocode from the defense class to detect incorrect HTTP protocols

Incorrect Hostname (or IP-based Connection)
When the web server receives requests using only the IP address without referencing the
hostname (either using HTTP/1.0 without the Host or by only referring to the IP address
in the Host with other HTTP protocols), the request could come from an attack tool that is
only using the IP address to access the application (and to eventually speed up the
process):
1: if($HTTP_HOST != "www.example.com") {
2: $this->attackDetected("Incorrect hostname", 100);

Code 4: Pseudocode from the defense class to detect an IP-based connection

Forced Browsing
Forced browsing occurs when a user tries to access a resource that either does not exist
or for which they do not have the required permissions2.

There are five different ways to check for forced browsing on the server side:

1. Invalid URI:
Whenever tools that perform path traversal (dotdotpwn, Burp, etc.) try to connect to
invalid URI resources (because they may be trying to access "/../something"),
they will hit an HTTP 400 error code because the directory is invalid. Simply check
for that on the web server config:

ErrorDocument 400 /invalidURI

Code 5: Configuration for an HTTP 400 error code in Apache

2 CWE-425: Direct Request ('Forced Browsing') (https://cwe.mitre.org/data/definitions/425.html)

© IOActive, Inc. All Rights Reserved. [7]

Then, add the log of the potential attack in the invalidURI webpage:
1: attackDetected("Invalid URI (potential path traversal)", 20);

Code 6: Call attackDetected() when the file "invalidURI" is accessed

2. Non-existent resource:
It is possible that a legitimate user may try to access a non-existent resource for
several reasons:

• The functionality was present in the application; it was stored in the browser's
cache and has been removed server side.

• The functionality was present in the application; a web crawler identifies it and
now it has been removed server side.

• The functionality was dynamically present in the user session.

Having a control here will prevent brute-force attacks on files and directories (when
using DirBuster, DIRB, etc.). Nevertheless, it is a good idea to give this type of
condition a low score to prevent normal users from hitting this trap by mistake.

The web server could be set up to show a specific webpage whenever someone
hits an HTTP 404:

ErrorDocument 404 /notfound

Code 7: Configuration for an HTTP 400 error code in Apache

The first action of the notfound web page should be to log the user's action.
1: attackDetected("Non-existing resource", 5);

Code 8: Call attackDetected() when the file "notFound" is accessed

3. Backups related to existent files:
Multiple tools try to expose sensitive information stored in backup files3. For
instance, whenever certain tools find a menu.php file in the web server, they will
try to access the associated backup files: menu.bak, menu.old, etc. This is the
same as the previous condition (accessing a non-existent resource), but with a
higher score if they reference backup files: these files were never presented to
users.
This control can either be set up as a general rule (mark all URLs containing the
".bak" string as an attack) or as a specific trap for a certain webpage:

3 CWE-530: Exposure of Backup File to an Unauthorized Control Sphere
(https://cwe.mitre.org/data/definitions/530.html)

© IOActive, Inc. All Rights Reserved. [8]

1: $results = $db->query("SELECT extension FROM denyExtension");
2: while ($row = $results->fetchArray()) {
3: if($extension == $row["extension"]) {
4: attackDetected("Non existing backup file", 100);

Code 9: Pseudocode from the defense class to check if the file extension is part of an
attack

Line 3 will check if the user was trying to access a forbidden file extension.

4. Non-authenticated user accessing an authenticated resource:
This may happen legitimately if a user tries to access functionalities using an
expired cookie. It is not legitimate if there is no authentication or cookie in place
and the user is just trying to access the privileged resource:

1: if (!user->isLogged())
2: attackDetected("Existing resource accessed by a non-authenticated user",

20);

Code 10: Call attackDetected() whenever a non-authenticated user is trying to access an authenticated
resource

5. Authenticated user accessing a privileged resource without permission:
This is probably the most critical scenario. There is no gray area where this has
happened by mistake. This should be flagged automatically as an attack and action
taken:

1: if (user->isLogged() && !user->isAuthorized())
2: attackDetected("Authenticated user without permission", 100);

Code 11: Call attackDetected() when a non-authorized user is trying to access an authorized resource

User-Agent
Even though the value of the User-Agent can be controlled by an attacker, these values
are normally left intact or inadvertently disclosed. Attack tools may expose their names in
the User-Agent (for example, sqlmap includes the string "sqlmap"). Other tools can
reveal that they are not normal web browsers (for example, programming languages or
command line tools expose their primitive names) and some try to disguise their actions
behind what would be consider normal User-Agents. But even these normal User-Agents
may expose unusual activities. WMAP, developed by Offensive Security for Metasploit,
uses a User-Agent from Internet Explorer 6.0, which is unlikely to be supported by
current web applications.

The following detects the direct disclosure of the tool names for Burp, Dirbuster, Nessus,
Nikto, Nmap, Paros, Parsero, Qualys, sqlmap, Vega, and w3af:
1: $results = $db->query("SELECT useragent FROM denyUserAgent");
2: while ($row = $results->fetchArray())
3: if(strstr($HTTP_USER_AGENT"], $row["useragent"]))
4: attackDetected("Vulnerability scanner in user-agent", 100);

Code 12: Pseudocode from the defense class to detect vulnerability scanners with the User-Agent

Sometimes the User-Agent is changed during the user's session to introduce payloads
in them or to disguise an attack. The initial value of the User-Agent should be set for the
user's session, and if it changes, it should be detected:

© IOActive, Inc. All Rights Reserved. [9]

1: if($USER_AGENT != $userSession["user_agent"])
2: attackDetected("User-agent changed during user session", 100);

Code 13: Pseudocode from the defense class to detect if User-Agent changed

Cookies
Cookies should be associated with the user’s IP address whenever they are set. It is
understandable that a user’s IP address may change during a user session, but it will be
unlikely that this happens more than a certain amount of times:
1: if($REMOTE_ADDR != $userSession["remote_addr"])
2: attackDetected("The IP address of the user changed for the same cookie",

25);

Code 14: Pseudocode from the defense class to detect if the original IP address changed

Traps (and Diversions)
Traps–also referred as honey traps–are functionalities in the application created to attract
and detect malicious actions. This is a well-known area of application defense that is
frequently exploited automatically by vulnerability analysis and penetration testing tools.

Some traps may also be set up as diversions: they will not trigger an alarm, but they may
entice the attacker to spend time trying to solve situations that do not have real
functionalities. Adding one line of code may be enough to accomplish this goal.

Traps and diversions can be associated with the user's session. By keeping an
association of which traps are being shown to which users, the logs can further explain
how the attacker performed a series of actions using different IP address and/or cookies.

Fake robots.txt Entry
You can set up a fake disallow entry in your robots.txt file that should never be accessed
by web crawlers or common users. The following URL /testing will be marked to not be
accessed in this robots.txt file, but it may be retrieved automatically by penetration
testing tools (like Burp, Core Impact, Nessus, Nikto, Parsero, and w3af):
User-agent: *
Disallow: /testing

Code 15: Sample robots.txt file

The contents of the fake robots.txt entry must alert the type of request received:
1: attackDetected("Fake robots.txt entry access", 100);

Code 16: Call attackDetected() when the file "testing" is accessed

Fake Hidden URL
Users or web crawlers will not normally process URLs within comments. Nevertheless,
automatic vulnerability analysis tools will try to access these hidden functionalities:
<!-- Old Admin Interface -->

Code 17: Hidden URL line to be implemented on any valid resource

© IOActive, Inc. All Rights Reserved. [10]

Searching for this common weakness4 is common among vulnerability analysis and
penetration testing tools. Whenever you receive a request in the previously defined URL
"/oldadmin" server side, it should be flagged as an attack:
1: attackDetected("Fake hidden URL access", 100);

Code 18: Call attackDetected() when the file "oldadmin" is accessed

Fake Cookie
Cookies can also be set up as traps for attackers. Modifying the name of the cookie or its
value on any request could be used to detect an attack. If attackers see a cookie named
"admin" with the value "false", they may be tempted to change it to "true". In the
following example, a fake admin cookie is being defined for the user (line 4), if this value
is ever changed (line 6), it will be flagged as an attack (line 7):
1: $cookie_name = "admin";
2: $cookie_value = "false";
3: if(!isset($cookie[$cookie_name])
4: $cookie[$cookie_name] = $cookie_value; // set a fake cookie named "admin"

with a "false" value
5: $userSession["cookie_"+$cookie_name] = $cookie_value;
6: if($cookie[$cookie_name] != $userSession["cookie_"+$cookie_name])
7: attackDetected("Fake cookie changed", 100);

Code 19: Pseudocode from the defense class to detect when fake cookies are modified

Fake Input Field
Parameters are the entry point for web applications and are normally brute-forced and
fuzzed to exploit security issues. Tools may commonly try to exploit the name of the
parameter and/or its value.

A fake input field can be set as part of the parameters on any form either as a trap or
diversion:
1: <form method="post">
2: Username: <input id="user" type="text" name="user" >

3: Password: <input id="pass" type="password" name="pass">
4: <?
5: $randomdata = substr(randomString(),rand(0, 32));
6: echo '<input type="hidden" name="passkey" value="'. $randomdata . '">';
7: ?>
8: </form>

Code 20: Fake input field implemented on the login form

In this example the input field named "passkey" is useless, it only contains a random
piece of data that is not used on the server side. However, using an appealing name in
the authentication may cause attackers to spend time dealing with it. Another approach
could be to set the value of "passkey" in the session and later check if it was modified:

4 CWE-615: Information Exposure Through Comments (https://cwe.mitre.org/data/definitions/615.html)

© IOActive, Inc. All Rights Reserved. [11]

1: if($userSession["passkey"] != $_POST["passkey"])
2: attackDetected ("Fake input field changed", 100);

Code 21: Pseudocode from the defense class to detect if the fake parameter was changed

Execution Controls
After a request is considered to be trustworthy, it will be processed by the application. The
following controls can be embedded to detect and protect the application from unwanted
or unexpected conditions. It should be noted that these controls can be set up in multiple
places within the same functionality when abnormal behaviors are detected.

Checks
The first line of defense is when functionalities verify the verb and parameters received.
They reveal if the request was properly crafted for the appropriate functionality:

Incorrect HTTP Method
HTTP verbs need to be set up according to the requirements of each functionality. If the
application is expecting to receive a POST request, anything different may be flagged as
suspicious. Additionally, attackers may try to force a GET method when they are trying to
exploit cross-site scripting (XSS) or cross-site request forgery (CSRF) issues:
1: if($REQUEST_METHOD != "POST")
2: attackDetected("Incorrect HTTP verb", 100);

Code 22: Pseudocode from the defense class to check for the correct HTTP verb

Missing Parameter
If the application is missing any parameter5 in the request, it may indicate that the request
has been tampered with. This type of situation is more unlikely to occur when dealing with
requests that do not rely in the GET method:
1: if(isset($_POST['id']))
2: $id = $_POST['id'];
3: else
2: attackDetected("Missing parameter id", 20);

Code 23: Call attackDetected() whenever a parameter is missing

Extra Parameter
If the functionality receive more parameters than expected6, it may indicate that the
request was altered (again, this will be more unusual for POST requests):

5 CWE-236: Improper Handling of Undefined Parameters (https://cwe.mitre.org/data/definitions/236.html)
6 CWE-235: Improper Handling of Extra Parameters (https://cwe.mitre.org/data/definitions/235.html)

© IOActive, Inc. All Rights Reserved. [12]

1: if(count($_POST)!=1) // only the parameter 'id' is expected in here
2: attackDetected("Extra parameters", 20);

Code 24: Call attackDetected() whenever there are more parameters per form than expected

Unexpected Values
Applications are expected to perform proper data validation on user input. Whenever
validation is performed on the client side to improve the user experience, the same
controls must be enforced on the server side. If any difference is detected on the server
side from the expected values, an attack should be flagged because someone bypassed
the client-side controls. Consider the following parameter id that is supposed to be a
number:
1: if(!is_numeric($id))
2: attackDetected("Unexpected value", 100);

Code 25: Call attackDetected() whenever unexpected values are detected on the server side

Man-in-the-middle Check
Certain client-server applications may be capable of verifying the authenticity of the
communications being performed to avoid man-in-the-middle (MiTM) attacks. For
example, a server-side application may try to perform a SSH2 connection using a
certificate to retrieve information. The moment that the certificate for that connection
cannot be verified as authentic, it should trigger an alarm that someone may be trying to
perform a MiTM attack:
1: $connection = ssh2_connect('shell.example.com', 22, array('hostkey'=>'ssh-

rsa'));
2:
3: if (ssh2_auth_pubkey_file($connection, 'username',
 '/home/username/.ssh/id_rsa.pub',
 '/home/username/.ssh/id_rsa', 'secret')) {
4: echo "Public Key Authentication Successful\n";
5: } else {
6: attackDetected("Public Key Authentication Failed", 100);
7: }

Code 26: Call attackDetected() whenever the authenticity of a connection fails

Path Traversal
User input is sometimes used to reference file names that will be read or written. A
common tactic to avoid path traversal vulnerabilities7 is to analyze the canonical path
instead of the relative or the absolute path. However, watching for any difference between
the absolute path and the canonical path may expose a path traversal attack:

7 CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
(https://cwe.mitre.org/data/definitions/22.html)

© IOActive, Inc. All Rights Reserved. [13]

1: import java.io.File;
2: public class CheckPaths {
3: public static void main(String [] args) {
4: File f = new File(args[0]);
5: try {
6: String absoluteFile = f.getAbsolutePath();
7: String canonicalFile = f.getCanonicalPath();
8: if(!absoluteFile.equals(canonicalFile))
9: System.out.println("Path traversal detected: "+f.getAbsolutePath()+"

vs "+f.getCanonicalPath());
10: }
11: catch(Exception e) {
12: System.out.println(e);
13: }
14: }
15: }

Code 27: Sample Java class for detecting path traversals

The previous code will detect the difference between getAbsolutePath() and
getCanonicalPath() when analyzing user input. Three different user inputs will be
analyzed to test the previous class: the first one is a correct value, the second value tries
to exploit a path traversal, and the third tries to follow a link before accessing the file8:
$ ls -l /somefile /../somefile /tmp/somefile
ls: /../somefile: No such file or directory
ls: /somefile: No such file or directory
lrwxr-xr-x 1 user wheel 11 Feb 29 08:24 /tmp/somefile -> /etc/passwd

$ java CheckPaths /somefile.txt

$ java CheckPaths /../somefile.txt
Path traversal detected: /../somefile.txt vs /somefile.txt

$ java CheckPaths /tmp/somefile
Path traversal detected: /tmp/somefile vs /etc/passwd

Figure 2: Sample output of CheckPaths

Anti-CSRF
Applications may include anti-CSRF9 protection whenever they receive a request. The
user may be a victim of an attack or may be an attacker testing for the vulnerability. The
attack must be flagged with a medium score and/or eventually warn the user that they are
the victim of an attack:
1: if(!verifyAntiXSRF(anti-xsrf-token))
2: attackDetected("Anti-XSRF token invalid", 50);

Code 28: Call attackDetected() when detecting CSRF attacks

8 CWE-59: Improper Link Resolution Before File Access ('Link Following')
(https://cwe.mitre.org/data/definitions/59.html)
9 CWE-352: Cross-Site Request Forgery (CSRF) (https://cwe.mitre.org/data/definitions/352.html)

© IOActive, Inc. All Rights Reserved. [14]

Client Properties
Certain properties should be analyzed when connections are being established: the origin
of the connection and when it is taking place.

Origin
The IP address is the first thing that will be checked before a user connects to the server.
The application may restrict connections to certain IP addresses and/or it may use the IP
address to identify the country from which the user is establishing the connection. Certain
software companies like Google are implementing a defensive control here: whenever
Gmail detects that you are logging in from an unknown country, it requires special user
interaction before you are able to use their application.
1: if(isGeoLocationForbidden($session))
2: attackDetected("Geo location is forbidden", 100);

Code 29: Call attackDetected() when a different or forbidden geo location has been used

Time of Access
This type of restriction has been in place since ancient times in UNIX systems. It is an
unusual restriction, but certain applications may want to take actions whenever users are
trying to log in outside of business hours.
1: if (date('H') < 8 || date('H') > 20)
2: alertAdmin("The user logged in outside business hours");

Code 30: Call attackDetected() or alertAdmin() when a user logs in outside of business hours

Exceptions
Exceptions may be thrown in multiple places throughout an application when an attacker
attempts to perform invalid operations. Payloads are never perfect on the first try, so it is
important to flag these occurrences as attacks. Malicious requests should be logged to
analyze the attack vectors and eventually stop processing the requests and/or the
affected functionalities.

Consider the following list compiled by CERT10 of Java exceptions that are areas of
interest for attackers:

Exception Name Description

java.io.FileNotFoundException Underlying file system structure, user name
enumeration

java.lang.OutOfMemoryError Denial of service

java.lang.StackOverflowError Denial of service

10 Computer Emergency Response Team (CERT) is a trusted, authoritative organization dedicated to improving the
security and resilience of computer systems and networks, which also define secure coding guidelines.

© IOActive, Inc. All Rights Reserved. [15]

Exception Name Description

java.net.BindException Enumeration of open ports when untrusted client
can choose server port

java.security.acl.NotOwnerException Owner enumeration

java.sql.SQLException Database structure, user name enumeration

java.util.ConcurrentModificationException May provide information about thread-unsafe code

java.util.jar.JarException Underlying file system structure

java.util.MissingResourceException Resource enumeration

javax.naming.InsufficientResourcesException Insufficient server resources (may aid denial of
service)

Table 1: Java exceptions that may expose sensitive information11

Expected Exceptions
Applications catch different types of exceptions, some more dangerous than others
depending on the context of the exception. The following compliant security policy
implemented by CERT shows how to avoid exposing sensitive information:
1: class ExceptionExample {
2: public static void main(String[] args) {
3: File file = null;
4: try {
5: file = new File(System.getenv("APPDATA") +
6: args[0]).getCanonicalFile();
7: if (!file.getPath().startsWith("c:\\homepath")) {
8: System.out.println("Invalid file");
9: return;
10: }
11: } catch (IOException x) {
12: System.out.println("Invalid file");
13: return;
14: }
15: try {
16: FileInputStream fis = new FileInputStream(file);
17: } catch (FileNotFoundException x) {
18: System.out.println("Invalid file");
19: return;
20: }
21: }
22: }

Code 31: Sample Java code from CERT to avoid exposing information with exceptions

11 ERR01-J. Do not allow exceptions to expose sensitive information
(https://www.securecoding.cert.org/confluence/display/java/ERR01-
J.+Do+not+allow+exceptions+to+expose+sensitive+information)

© IOActive, Inc. All Rights Reserved. [16]

The catch condition in line 11 should never occur, as it could be a symptom of a path
traversal attack. It is a perfect place to trigger a warning that an attack has been detected:
...
11: } catch (IOException x) {
12: System.out.println("Invalid file");
13: attackDetected("Path traversal detected", 50);
14: return;

Code 32: Call attackDetected() if someone is trying to exploit a path traversal

Uncaught Exceptions
Attackers can use information from uncaught exceptions to focus their attacks more
precisely. The impact of this issue depends on the type of exception being triggered. The
errors may assist an attacker to exploit an issue not previously considered by the
developer.

This is the output of the previous class when executed without parameters:
$ java ExceptionExample
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0
 at ExceptionExample.main(ExceptionExample.java:9)

Figure 3: Output of the ExceptionExample class

Line 7 references args[0] without verifying if it has the required arguments12, so the first
thing it does is to throw a java.lang.ArrayIndexOutOfBoundsException. This
exception is not properly handled, and according to CERT, all exceptions should be
handled appropriately13. CERT also states that exceptions must be prevented while
logging data, but the System.out.println() calls (lines 9, 13, and 20) are in violation
of secure behavior14.

Finally, the purpose of the previous class is to conceal "any information about files
outside c:\homepath" (line 8). That statement is false, since files in the directory
"c:\homepathfake" are outside of "c:\homepath", and they would be considered as
correct. Line 8 should reference the directory with a backslash at the end
"c:\\homepath\\" instead of using "c:\\homepath".

Even trusted, security-compliant code may be subject to attacks, and that is why all
uncaught exceptions should be analyzed along with the requests that produce them. A
global catch statement should be defined for uncaught exceptions thrown by the
application.

12 MET00-J. Validate method arguments (https://www.securecoding.cert.org/confluence/display/java/MET00-
J.+Validate+method+arguments)
13 ERR51-CPP. Handle all exceptions (https://www.securecoding.cert.org/confluence/display/cplusplus/ERR51-
CPP.+Handle+all+exceptions)
14 ERR02-J. Prevent exceptions while logging data
(https://www.securecoding.cert.org/confluence/display/java/ERR02-J.+Prevent+exceptions+while+logging+data)

© IOActive, Inc. All Rights Reserved. [17]

1: public class uncaught {
2: public static void main(String[] args) throws Exception {
3: Thread.currentThread().setUncaughtExceptionHandler(new

Thread.UncaughtExceptionHandler() {
4: public void uncaughtException(Thread t, Throwable e) {
5: logger.error("Uncaught exception", e);
6: attackDetected("Uncaught exception", 100);
7: System.exit(1);
8: }
9: });
10: throw new IllegalArgumentException("uncaught exception for testing");
11: }
12: }

Code 33: Example Java code to detect uncaught exceptions

To provide a basic virtual patching15 on the fly, you may want to prevent the functionality16
from being called again with the same parameters until it is reviewed.

Patterns
Lack of anti-automation controls allows attackers to obtain information by issuing
unlimited requests. Patterns can be identified when analyzing these requests.

Password Looping
A basic protection against brute-force attacks involves restricting the number of
passwords that can be attempted for each account. However, a common pattern
attackers use to avoid that protection is to attempt to log in to each user account only a
few times and then move on to the next account before the first one is blocked. An
attacker may loop through several different user accounts until they are able to break in
without blocking them.

The defensive control should not only be put on the account being targeted, but also on
the IP address making the connections17:
1: if (!login($user, $pass)) // sample failed login functionality
2: attackDetected("Password attempt", 10);

Code 34: Call attackDetected() whenever a user is unable to login

Frequency
The number of requests initiated by manual browsing does not compare to the requests
per minute performed by attack tools. Attack tools and certain attacks (such as padding
attacks, entropy analysis of cookies, measuring the timing of web servers, etc.) try to
obtain the largest amount of information in the least amount of time.

15 Virtual Patching Best Practices (https://www.owasp.org/index.php/Virtual_Patching_Best_Practices)
16 CWE-390: Detection of Error Condition Without Action (https://cwe.mitre.org/data/definitions/390.html)
17 CWE-307: Improper Restriction of Excessive Authentication Attempts
(https://cwe.mitre.org/data/definitions/307.html)

© IOActive, Inc. All Rights Reserved. [18]

The number of requests per minute may be also analyzed by the application by saving
the current time (lines 2 and 4), then adding a hit per request (line 5). In case the number
of requests in the last minute is higher than 100 (line 6), consider the action to be an
attack (line 5):
1: if($userSession ["requests_last_minute"] < (time()-60)) {
2: $userSession["requests_last_minute"] = time();
3: $userSession["amount_requests_last_minute"] = 0;
4: }
5: $userSession ["amount_requests_last_minute"] += 1;
6: if($_SESSION["amount_requests_last_minute"] > 100) { // Sample max value
7: attackDetected("Too many requests per minute", 100);
8: }

Code 35: Pseudocode from the defense class to measure requests per minute

The previous control has also been implemented by Fail2Ban. It analyzes the log files of
the web server and bans the ones that show signs of malicious actions18.

Post-execution Controls
If an attacker is able to circumvent the pre-execution and embedded execution controls,
the last line of defense before they get a response will be the post-execution controls. The
response may contain valuable information that could aid an attacker.

Sensitive Information
Passwords are one of the ultimate goals for attackers, whether they are in the operating
system (for example, in /etc/passwd or /etc/shadow) or the database (for example, the
user's table containing the passwords hashes). Fake user accounts and/or hashes could
be introduced in these places and used to trigger exfiltration attack detection whenever
these special strings are found in responses:
1: if(strstr($response, "fakeAdminUser")) // fake admin user in /etc/passwd
2: attackDetected("Passwords leaked", 100);

Code 36: Call attackDetected() when a password exfiltration is detected

Attackers may not be able to retrieve the entire file or database table containing
passwords all within one single request, but they may retrieve passwords line by line. This
means that the locations of the fake passwords should be properly analyzed in advance.

Operating system files and environmental information is also an important piece of
information that can be detected before it is retrieved. If an attacker is able to list
operating system files, certain filenames could be used to trigger an alarm whenever they
are found in responses. Additionally, special strings could be put in the web server’s
environment in case the attacker is traversing the /proc directory to look for information
in the environ files (valuable information when they do not have a path disclosure). If the

18 Fail2Ban (http://www.fail2ban.org/)

© IOActive, Inc. All Rights Reserved. [19]

"secrethiddendirectory" is found within the response, it should be considered a
critical-risk attack:
1: if(strstr($response, "secrethiddendirectory")) // fake file/directory
2: attackDetected ("Files leaked", 100);

Code 37: Call attackDetected() when a filename exfiltration is detected

Whenever an attacker is able to exfiltrate sensitive data from your system (passwords or
files), a critical action should take place. This means disconnecting the application from
the network to perform forensic analysis after the attack has been detected. Any further
interaction may only benefit the current capabilities of the attacker.

CERT states that programs must operate only on files in secure directories19. As shown in
Figure 4, if the path contains any symbolic links, the routine provided by CERT will
recursively invoke itself (in green) on the linked-to directory and ensure it is also secure. A
symlinked directory may be secure if both its source and linked-to directory are secure (in
blue). An extract of the complete method is shown below:

Figure 4: Extract code from CERT for the method isInSecureDir()

The method isInSecureDir() does not analyze the possibility of hard links. This
property can be retrieved in Java when requesting the integer property value
unix:nlink. This means that if an attacker sets a hard link to a file in a shared
directory, all of the file’s contents will also be written to the hard-linked file in the shared
directory. This method may be used to retrieve sensitive information from the system.

Timing Information
The amount of time required by a function when executing a request20 can provide
valuable information to an attacker. Authentication is a common target for attackers when

19 FIO00-J. Do not operate on files in shared directories
(https://www.securecoding.cert.org/confluence/display/java/FIO00-
J.+Do+not+operate+on+files+in+shared+directories)
20 CWE-208: Information Exposure Through Timing Discrepancy (https://cwe.mitre.org/data/definitions/208.html)

© IOActive, Inc. All Rights Reserved. [20]

performing a blind attack against the characters of a password21. Introducing a small
random delay of microseconds in the response will reduce the probability of this type of
attack succeeding and will go unnoticed by regular users:
1: function login($user, $pass) {
2: ...
3: usleep(mt_rand(0,1000)); // delay 0 to 1000 microseconds
4: return $loginStatus;
5: }

Code 38: Add a small delay in login functions to avoid disclosing execution time

Moreover, requests taking more time than expected could also act as a warning for
potential attacks. If attackers are able to cause requests to be delayed (by introducing a
delay on purpose with a blind SQL injection22 or an entity expansion23) it may indicate that
code execution, SQL injection, or denial-of-service attacks are possible. To properly
control for this, application responses should be measured to avoid false positives when
responses take longer than expected.

The maximum amount of wait time should be as short as possible without interfering with
the delay of functionalities:
1: if(($start_time+5) < time()) // if it takes more than 5 seconds..
2: attackDetected("Too much time", 20);

Code 39: Call attackDetected() when processing the function takes more than certain amount of time

Size Information
In addition to looking for the most time-consuming functionalities, attackers also look for
the most bandwidth-consuming functionalities, with the goal of depleting bandwidth
resources.

Additionally, attack tools often determine if their actions had an impact based in the size
and content of the application responses. This can easily be disrupted by adding a line of
code that introduces a small random number of whitespaces or comments to the
response to mess with the attacker’s analysis. This can be implemented in multiple
random places in the application, particularly in headers and footers since they are
commonly implemented by all of the functionalities:

21 Web Timing Attacks Made Practical (https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-
Attacks-Made-Practical-wp.pdf)
22 Blind SQL Injection - Time Based (https://www.owasp.org/index.php/Blind_SQL_Injection)
23 XML Entity Expansion (http://projects.webappsec.org/w/page/13247002/XML%20Entity%20Expansion)

© IOActive, Inc. All Rights Reserved. [21]

1: echo str_pad(' ', mt_rand(0,10)); // add 0 to 10 random whitespaces

Code 40: Add random spaces to always have different sizes in responses

Environment Information
When it comes to web applications and web servers, there are different pieces of
environment information that provide knowledge to attackers. You do not want to share all
of the available information and how their actions are affecting you. For example, even
though the Date header must be sent according to the HTTP standard24, it provides
information to attackers who want to predict the values of pseudo-random number
generators (PRNG)25. In the same way that you should avoid disclosing that an "HTTP
500 Internal Server Error" has occurred, you may want to avoid disclosing
internal information about the web server that can be used to perform other attacks.

As was previously stated, HTTP errors disclose how an attacker’s actions affect the
application and should be hidden. Keep the information to yourself, give the attacker a
fake response26, and then work on solving the problem that caused the original request.
This could be either set up in the web server or in the application:
1: header("HTTP/1.1 200 OK"); // force an OK response

Code 41: Send a fake HTTP OK response whenever an error is triggered

Attack Yourself
The defensive functionalities should be tested to eliminate false positives, verify that the
information is being shared across the required platforms, and confirm that alarms are
working as expected. A penetration test can provide you with this information and help
you identify any adjustments that need to be made.

24 Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content (https://tools.ietf.org/html/rfc7231#section-
7.1.1.2)
25 PRNG: Pwning Random Number Generators (https://media.blackhat.com/bh-us-
12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf)
26 Defense by Numb3r5 - Making problems for script k1dd13s and scanner monkeys
(https://www.defcon.org/images/defcon-21/dc-21-presentations/Riley/DEFCON-21-Riley-Defense-by-Numbers-
Updated.pdf)

© IOActive, Inc. All Rights Reserved. [22]

During an Attack
If you know you are under attack, what should you do? There are three basic steps you
want to take:

1. Log and share information about the attack

2. Inform responsible parties about the attack

3. Take appropriate action

Log the Attack
Once applications go live, they should log all of the information and share it internally.

Logging should provide non-repudiation, timestamps, and information about the attacker's
actions. It is important to save the information that will allow a post-mortem analysis to
correlate which functionalities the same attacker executed.

The following pieces of information should be saved:

• Timestamp

• Affected application

• Attacker’s IP address

• Attacker’s username (if they were logged in or tried to log in)

• Attacker’s real cookie

• Affected filename

• Type of attack

• Score of the attack

This information can be used to track attackers and take actions whenever they reach the
maximum score allowed. Furthermore, whenever certain critical conditions are triggered
(for example, "Expected Exceptions") the filename could be quarantined until further
analysis is performed. These pieces of information may ultimately be used in legal actions
against the attacker.

Information regarding whom is considered an attacker must be available for other hosts
and applications within your network before even informing about the attack. All systems
in your network should verify the attacker's database to avoid dealing with malicious
actors. Attacks may focus first on the systems that require the least amount of effort to
compromise, and then may try to escalate to target your main application from within your
network.

© IOActive, Inc. All Rights Reserved. [23]

It is possible to get lists of malicious IP address from third parties. This information can be
provided for free27 or by paid subscriptions28. However, these third parties do not provide
clear information on how the information was detected, what was detected, when it was
detected, and who detected which activity.

Inform about the Attack
Once an attack has been detected, an alarm should be triggered to inform the responsible
person(s). First the information about the attack and the attacker should be gathered
before alerting the administrator:
1: $alert_info = "The last attack from the user was: ".$attack;
2: if($attackScore >= $LIMIT)
3: $alert_info = $alert_info.". The user reach the maximum score";
4: else
5: $alert_info = $alert_info.". The user reach the maximum score because of a

series of events";
6: $alert_info = $alert_info.".\nAttacker details:\n";
7: $alert_info = $alert_info."IP: ".$session_parameters['ip']."\n";
8: $alert_info = $alert_info."User: ".$session_parameters['user']."\n";
9: $alert_info = $alert_info."Cookie: ".$session_parameters['cookie']."\n";
10: $this->alertAdmin($alert_info);

Code 42: Pseudocode from the defense class with the attack/attacker information

Lines 2-5 will inform how the user reached the maximum score. Lines 6-9 will provide
some information about the attacker and then the alert will be triggered. The alert could
be an SNMP message, a visual pop-up, or an email message. The following code sends
an email message once the score exceeds a certain threshold:
1: function alertAdmin($alert_info) {
2: mail("admin@yourdomain.org", "attacker detected", $alert_info);
3: }

Code 43: Pseudocode from the defense class to alert the admin about the attack information

The first implementation of this framework was deployed for an application on an internal
network. After sitting quietly for six months, the first real email of an attack was sent. A
vulnerability scanner was detected, as they were in the recognition phase. After receiving
the alarm, the issue was escalated to the IT team, and the attacker was quickly identified.

27 IP Address Blacklist Checker Tool (http://www.ipvoid.com)
28 McAfee GTI Reputation & Categorization Services (http://www.mcafee.com/us/threat-center/technology/gti-
reputation-technologies.aspx)

© IOActive, Inc. All Rights Reserved. [24]

Figure 5: First real detection of an attack in an internal network

Take Action
Magruder's principle states that it is generally easier to induce an enemy to maintain a
pre-existing belief than to present notional evidence to change that belief. Thus, it may be
better to examine how an enemy's existing beliefs can be turned to your advantage rather
than attempting to change their beliefs.29

Without revealing your methods, and depending on the scenario, you may want to take
actions to wear down the attacker. It is important that these approaches are low cost and
easy to maintain when dealing with long-term attacks. Doing a mixture of different
techniques may push an attacker to spend more time and computational power in
worthless areas. This may give you time to tighten up your application and better deal
with their actions.

Distract
You can induce an attacker to penetrate fake areas of your application. Attackers may
want to believe that certain functionalities will be present in your application, such as
administrative functionalities. Attackers may try to access the "/admin" URL on your
website, and you could prepare a fake authentication system to keep them entertained.

Another possibility would be to show them incorrect information to increase the difficulty
to distinguish true vulnerabilities from false vulnerabilities. A common approach is to
change the 404 responses to show always 200 OK responses, and try to disguise when
files are not found. Another possibility would be to introduce "HTTP 500 Internal
Server Error" error codes to force the attacker to analyze properly working requests or
eventually cause fake exception codes to be triggered.

Slow Down
In certain scenarios, it is worth slowing down the attackers. When they are sending
multiple requests per minute, you may want to include an option to slow down the attacks.
Faking a higher response time is beneficial from two points of view:

• They may be real users using the same IP address, and slowing them may keep
your application up and running.

29 Battlefield Deception - Magruder's principle (http://fas.org/irp/doddir/army/fm90-2/90-2ch1.htm)

© IOActive, Inc. All Rights Reserved. [25]

• If they are real attackers, faking incapacity may cause them to believe that they are
achieving their objective.

Ultimately, you may decide to stop responding completely to make the attacker believe
that they have accomplished their goal (if it was a denial of service) or that they will be
unable to do so (if the attack requires numerous requests in a specific time frame).

Stop
Blocking is the most common defense mechanism in systems and applications. A
common scenario happens today when an attacker tries multiple incorrect passwords on
a user’s account. The targeted account is locked to prevent an attacker from getting into
it. Even though this action protects the victim from being hacked, it does not do anything
to address the attacker.

Once an attacker reaches a certain score, the attacker could be banned from the
application. The ban can be set up to last for a specific amount of time or they could
require an administrator to unban them. These scenarios should take into consideration
what the consequences would be if the attacker had multiple IP addresses (for example, if
they are using IPv6) or if the attacker is using an IP address shared with other legitimate
users. Depending on the context, it may be preferable to block entire subnets and then
analyze the best course of action. The ultimate blocking action is to disconnect the
affected system from your network to avoid any further interaction and perform computer
forensic analysis.

Bait
Developers may include snippets of code in applications that whenever they are hacked,
enable them to prosecute attackers. These bait functionalities or pieces of information
must not have a negative impact on the image of the company. Some possibilities are:

• A small portion of the application can be created with sequential values for
usernames in the URL. Whenever someone tries a sequential value they could be
illegally accessing other user's account confidential information, which may be
punished.

• An authentication with a warning message disclosing that it is illegal to connect to it
without authorization. This authentication may use default usernames and
passwords in order to be able to rightfully accuse attackers of breaking into
restricted locations.

• Give information on a real credit card and/or bank information after the attacker is
detected and take actions whenever they are used.

Some of these actions could already be in place to lure attackers and prosecute them as
criminals for breaching applications.

© IOActive, Inc. All Rights Reserved. [26]

Conclusions
Security should be included in the design of applications, pairing developers with hackers.
Implementing a defensive layer allows applications to control what is happening internally
and control different situations.

An arms race can take place between attackers and defenders when implementing a
defensive layer. Attackers may use more resources and start changing their methods to
attack applications. When this happens, the defense should be improved and updated to
cope as attack techniques evolve.

Defensive controls can also be used to expose potential flaws in the application.
Attackers may trigger flaws using novel mechanisms not previously considered, which
can be further analyzed when they are exploited.

© IOActive, Inc. All Rights Reserved. [27]

Appendix A: Score Table
Every attack must have a probability associated with the corresponding likelihood.
This probability can act as the score for a potential attack. The framework considers
that whenever the score reaches 100, the user should be considered an attacker.

Whenever a control requires only the "IP or session" to be verified, this means that if a
single entry point is defined for the application, it is only required to have the control
one time. Mostly this will apply to pre-execution and post-execution controls.

The following scores may serve as a guide and should be adjusted per application:

ID Category Type of Attack Probability of
Attack Requires

1 Pre execution Malicious HTTP Method 25 IP or session

2 Pre execution Malicious URL 10 IP or session

3 Pre execution Invalid HTTP Protocol Version 100 IP or session

4 Pre execution Incorrect Hostname 100 IP or session

5 Pre execution Forced Browsing: Invalid URI 20 IP or session

6 Pre execution Forced Browsing: Non-existent
Resource 5 IP or session

7 Pre execution Forced Browsing: Backup File 100 IP or session

8 Pre execution Forced Browsing: Existent Resource
Anonymous 20 Auth user

9 Pre execution Forced Browsing: Privileged Resource
Authenticated 100 Auth user

10 Pre execution User-Agent: Malicious String 100 IP or session

11 Pre execution User-Agent: Did it change? 100 Session

12 Pre execution Cookies: Concurrent Session 25 Session

13 Pre execution Trap: Fake robots.txt Entry 100 IP or session

14 Pre execution Trap: Fake Hidden URL 100 IP or session

15 Pre execution Trap: Fake Cookie 100 Session

16 Pre execution Trap: Fake Input Field 100 Session

17 Execution Check: Incorrect HTTP Method 100 IP or session

18 Execution Check: Missing Parameter 20 IP or session

19 Execution Check: Extra Parameters 20 IP or session

20 Execution Check: Unexpected Values 100 IP or session

21 Execution Check: MiTM 100 IP or session

22 Execution Check: Path Traversal 100 IP or session

23 Execution Check: Anti-CSRF 50 Session

© IOActive, Inc. All Rights Reserved. [28]

ID Category Type of Attack Probability of
Attack Requires

24 Execution Client Properties: Origin 100 Auth user

25 Execution Client Properties: Time of Access 0 Auth user

26 Execution Exceptions: Expected 50 IP or session

27 Execution Exceptions: Uncaught 100 IP or session

28 Execution Patterns: Password Looping 10 IP or session

29 Execution Patterns: Frequency 100 IP or session

30 Post execution Sensitive Information 100 IP or session

31 Post execution Time Information 20 IP or session

Table 2: Defense score table

© IOActive, Inc. All Rights Reserved. [29]

Appendix B: Tool Identification

Tool User-Agent IP-based
Connection

Forced
Browsing

Retrieves
Backup
Files

Retrieves
robots.txt
Files

URL
Disclosure HTTP Verb

Acunetix WVS no no yes yes yes yes yes

Burp Suite yes no yes yes yes yes yes

Core Impact n/a n/a n/a yes yes n/a n/a

dirb no no yes no no no no

Dirbuster yes no yes no no no no

dotdotpwn no no yes no no no no

Metasploit (wmap) no no yes yes no no yes

Nessus yes yes yes yes yes yes yes

Nikto yes yes yes no yes yes yes

Nmap yes no no no no no yes

Paros yes no yes yes no yes no

Parsero yes no no no yes no no

QualysGuard yes yes yes no no yes yes

skipfish yes no yes no no yes yes

sqlmap yes no no no no no no

Vega yes no no no no yes no

w3af yes yes yes yes yes n/a yes

WebScarab no yes no no no no no

Xenotix XSS Exploit
Framework

no no no no no yes no

Zed Attack Proxy no yes no no no yes no

Table 3: Tool identification

© IOActive, Inc. All Rights Reserved. [30]

About Fernando Arnaboldi
Fernando Arnaboldi is a senior security consultant at IOActive specializing in penetration testing and code reviews
on multiple platforms. He has 20 years of development experience in a variety of programming languages and has
presented in the past in security conferences such as Black Hat, DEF CON and OWASP AppSec USA.

About IOActive
IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in
delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a
portfolio of specialist security services ranging from penetration testing and application code assessment through
to semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with
their most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with
global operations through the Americas, EMEA and Asia Pac regions. Visit www.ioactive.com for more information.
Read the IOActive Labs Research Blog: http://blog.ioactive.com. Follow IOActive on Twitter:
http://twitter.com/ioactive.

